17 research outputs found

    Statistical risk estimation for communication system design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 281-295).Spacecraft are complex systems that involve many subsystems and multiple relationships among them. The design of a spacecraft is an evolutionary process that starts from requirements and evolves over time. During this process, changes can affect mass and power at component, subsystem, and system level. Each spacecraft has to respect overall constraints in terms of mass and power. The current practice in system design deals with this problem by allocating margins to individual components and to individual subsystems. However, a statistical characterization of the fluctuations in mass and power of the overall system (i.e. the spacecraft) is missing. This lack can result in a risky spacecraft design that might not fit the mission constraints and requirements, or in a conservative design that might not fully utilize the available resources. This problem is especially challenging at the initial stage of the design, when high levels of uncertainty due to lack of knowledge are unavoidable. This research proposes a statistical approach to quantify the likelihood that the design of a spacecraft would meet the mission constraints in mass and power consumption, focusing on the initial stage of the design. Due to the complexity of the problem and the different expertise required to develop a complete risk model for a spacecraft design, the scope of this research is focused on risk estimation for a specific spacecraft subsystem: the communication subsystem. The current research aims to be a "proof of concept" of a risk-based design approach, which can then be further expanded to the design of other subsystems as well as to the whole spacecraft. The approach presented in this thesis includes a baseline communication system design tool, and a statistical characterization of the design risks through a combination of historical mission data and expert opinion. Different statistical techniques are explored to ensure that the amount of information extracted from data and expert opinion is maximized. Specifically, for statistics based on data, Kernel Density Estimator is selected as the preferred technique to extract probability densities from a database of previous space missions' components. Expert elicitation is generated through a four-part model which quantifies experts' sensitivity to biases, and uses this measurement to compose properly the assessments from different experts. Finally, an optimization framework is developed to compare multiple possible design architectures, and to select the one that minimizes design objectives, like mass and power consumption, while minimizing the risk associated with the same metrics. Examples of missions are applied to validate the model. Results show that the statistical approach recognizes whether the initial estimate of the system is an overestimation or an underestimation, providing a valuable tool to measure the risk of a communication system at the initial state of the design. Specifically, statistics based on historical data and on expert elicitation allow the designer to size contingency properly, providing a reliable estimation of mass and power in the initial stage of the design. Thanks to this method, the communication system designers will be able to evaluate and compare different communication architectures in a risk trade-off prospective across the evolution of the design. Extensions to different subsystems and to additional metrics (like cost) make this model applicable to a wider range of problems.by Alessandra Babuscia.Ph.D

    An Experimental Platform for Multi-spacecraft Phase-Array Communications

    Full text link
    The emergence of small satellites and CubeSats for interplanetary exploration will mean hundreds if not thousands of spacecraft exploring every corner of the solar-system. Current methods for communication and tracking of deep space probes use ground based systems such as the Deep Space Network (DSN). However, the increased communication demand will require radically new methods to ease communication congestion. Networks of communication relay satellites located at strategic locations such as geostationary orbit and Lagrange points are potential solutions. Instead of one large communication relay satellite, we could have scores of small satellites that utilize phase arrays to effectively operate as one large satellite. Excess payload capacity on rockets can be used to warehouse more small satellites in the communication network. The advantage of this network is that even if one or a few of the satellites are damaged or destroyed, the network still operates but with degraded performance. The satellite network would operate in a distributed architecture and some satellites maybe dynamically repurposed to split and communicate with multiple targets at once. The potential for this alternate communication architecture is significant, but this requires development of satellite formation flying and networking technologies. Our research has found neural-network control approaches such as the Artificial Neural Tissue can be effectively used to control multirobot/multi-spacecraft systems and can produce human competitive controllers. We have been developing a laboratory experiment platform called Athena to develop critical spacecraft control algorithms and cognitive communication methods. We briefly report on the development of the platform and our plans to gain insight into communication phase arrays for space.Comment: 4 pages, 10 figures, IEEE Cognitive Communications for Aerospace Applications Worksho

    The Lunar Polar Hydrogen Mapper (LunaH-Map) CubeSat Mission

    Get PDF
    The Lunar Polar Hydrogen Mapper (LunaH-Map) is a 6U CubeSat mission recently selected by NASA\u27s Science Mission Directorate to fly as a secondary payload on first Exploration Mission (EM-1) of the Space Launch System (SLS), scheduled to launch in July 2018. LunaH-Map is led by a small team of researchers and students at Arizona State University, in collaboration with NASA centers, JPL, universities, and commercial space businesses. The LunaH-Map mission will reveal hydrogen abundances at spatial scales below 10 km in order to understand the relationship between hydrogen and permanently shadowed regions, particularly craters, at the Moon\u27s South Pole. The mission\u27s primary payload is designed to use the scintillator material Cs2YLiCl6:Ce, or CLYC to measure count rates of thermal and epithermal neutrons. Enabled by a low-thrust ion propulsion system, LunaH-Map will achieve lunar orbit insertion within ~12 months of SLS separation and maneuver into a highly elliptical, low-perilune (5-10 km) orbit centered around the South Pole of the Moon. In this orbit, LunaH-Map will achieve over 140 low-altitude fly-bys of the South Pole during its two month science phase. LunaH-Map and two fellow secondary payloads selected by NASA to fly on SLS EM-1 will be the first CubeSats to explore the Moon and interplanetary space

    Demonstrating high-precision photometry with a CubeSat: ASTERIA observations of 55 Cancri e

    Get PDF
    ASTERIA (Arcsecond Space Telescope Enabling Research In Astrophysics) is a 6U CubeSat space telescope (10 cm x 20 cm x 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stabilty thermal control. ASTERIA demonstrated 0.5 arcsecond RMS pointing stability and ±\pm10 milliKelvin thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in August 2017 and deployed from the International Space Station (ISS) November 2017. During the prime mission (November 2017 -- February 2018) and the first extended mission that followed (March 2018 - May 2018), ASTERIA conducted opportunistic science observations which included collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct CMOS detector column-dependent gain variations. A Markov Chain Monte Carlo (MCMC) approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2\sim2~\Rearth), measuring a transit depth of 374±170374\pm170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.Comment: 23 pages, 9 figures. Accepted in A

    The Lunar Polar Hydrogen Mapper (LunaH-Map) Mission

    Get PDF
    The Lunar Polar Hydrogen Mapper (LunaH-Map) mission will map hydrogen enrichments within permanently shadowed regions at the lunar south pole using a miniature neutron spectrometer. While hydrogen enrichments have been identified regionally from previous orbital missions, the spatial extent of these regions are often below the resolution of the neutron instruments that have flown on lunar missions. LunaH-Map will enter into an elliptical, low altitude perseline orbit which will enable the mission to spatially isolate and constrain the hydrogen enrichments within permanently shadowed regions. LunaH-Map will use a solid iodine ion propulsion system, X-Band radio communications through the NASA Deep Space Network, star tracker, C&DH and EPS systems from Blue Canyon Technologies, solar arrays from MMA Designs, LLC, mission design and navigation by KinetX. Spacecraft systems design, integration, qualification, test and mission operations are performed by Arizona State University

    LunaH-Map: Revealing Lunar Water with a New Radiation Sensor Array

    Get PDF
    A new type of neutron and gamma-ray spectrometer called the Miniature Neutron Spectrometer (Mini-NS) has been developed, assembled, qualified and delivered as part of the Lunar Polar Hydrogen Mapper (LunaH-Map) cubesat mission. The LunaH-Map spacecraft is currently manifested as a secondary payload on the Space Launch System (SLS) Artemis-1 rocket. LunaH-Map will deploy from Artemis-1 and enter a low altitude perilune elliptical orbit around the Moon. The Mini-NS will measure the lunar epithermal neutron albedo, and measurements around perilune will be used to produce maps of hydrogen enrichments and depletions across the lunar South Pole region including both within and outside of permanently shadowed regions (PSRs). The Min-NS was designed to achieve twice the epithermal neutron count rate of the Lunar Prospector Neutron Spectrometer (LP-NS). The instrument response was characterized through the collection of pre-flight neutron counting data with a Cf-252 neutron source at Arizona State University across hundreds of power cycles, as well as across the expected temperature range. The instrument spatial response was characterized at the Los Alamos National Laboratories (LANL) Neutron Free In-Air Facility. The LunaH-Map Mini-NS was designed to fit within the cubesat form-factor and uses two detectors with eight sensor heads that can be operated independently. For future missions with different science goals that can be achieved with epithermal neutron detection, the number of Mini-NS sensor heads can easily be modified without requiring a complete re-design and re-qualification

    HD 219134 Revisited: Planet d Transit Upper Limit and Planet f Transit Nondetection with ASTERIA and TESS

    Get PDF
    HD 219134 is a K3V dwarf star with six reported radial-velocity discovered planets. The two innermost planets b and c show transits, raising the possibility of this system to be the nearest (6.53 pc), brightest (V = 5.57) example of a star with a compact multiple transiting planet system. Ground-based searches for transits of planets beyond b and c are not feasible because of the infrequent transits, long transit duration (~5 hr), shallow transit depths (<1%), and large transit time uncertainty (~half a day). We use the space-based telescopes the Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) and the Transiting Exoplanet Survey Satellite (TESS) to search for transits of planets f (P = 22.717 days and M sin i = 7.3 ± 0.04M_⊕) and d (P = 46.859 days and M sin i = 16.7 ± 0.64M_⊕). ASTERIA was a technology demonstration CubeSat with an opportunity for science in an extended program. ASTERIA observations of HD 219134 were designed to cover the 3σ transit windows for planets f and d via repeated visits over many months. While TESS has much higher sensitivity and more continuous time coverage than ASTERIA, only the HD 219134 f transit window fell within the TESS survey's observations. Our TESS photometric results definitively rule out planetary transits for HD 219134 f. We do not detect the Neptune-mass HD 219134 d transits and our ASTERIA data are sensitive to planets as small as 3.6 R_⊕. We provide TESS updated transit times and periods for HD 219134 b and c, which are designated TOI 1469.01 and 1469.02 respectively
    corecore